Please check the examination details belo	w before ente	ering your	candidate ir	nformation
Candidate surname		Other na	mes	
Centre Number Learne	r Registratio	n Numb	er	
	Pearson BTEC Level 3 Nationals Certificate, Extended Certificate, Foundation Diploma, Diploma, Extended Diploma			ificate,
Tuesday 23 May 2023				
Afternoon (Time: 40 minutes)	Paper reference	31	617	7H/1B
Applied Science/Forens Criminal Investigation	ic and			
UNIT 1: Principles and Applications of Science I Biology SECTION A: STRUCTURES AND FUNCTIONS OF CELLS AND TISSUES				
You must have: A calculator and a ruler.				Total Marks

Instructions

- Use **black** ink or ball-point pen
- **Fill in the boxes** at the top of this page with your name, centre number and learner registration number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The exam comprises three papers worth 30 marks each:
 - Section A: Structures and Functions of Cells and Tissues (Biology)
 - Section B: Periodicity and Properties of Elements (Chemistry)
 - Section C: Waves in Communication (Physics).
- The total mark for this exam is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 Figure 1 shows the five levels of organisation in a multicellular organism.

Figure 1

(a) Identify the missing words represented by the shapes ● and ◆ in Figure 1.

(2)

2

(b) Figure 2 shows a light microscope that can be used to view cells.

(Source: @PAL)

Figure 2

(i) The objective lens magnification of a light microscope can be calculated by:

$$objective \ lens \ magnification = \frac{magnifying \ power}{eye \ piece \ lens \ magnification}$$

Calculate the objective lens magnification of the light microscope with a \times 10 eye piece lens magnification and a \times 40 magnifying power.

(2)

Show your working.

objective lens magnification = ×

(ii) Identify the maximum resolving power (resolution) of a light microscope.

(1)

- 🛛 **A** 0.02 μm
- **B** 0.2 μm
- **D** 20 μm

(Total for Question 1 = 5 marks)

(a) Figure 3 shows an electron micrograph of some smooth muscle cells.

magnification \times 400

(Source: © PAL)

Figure 3

Identify the cell component labelled Y in Figure 3.

(1)

- cell membrane
- Golgi apparatus X
- nucleus X C
- X rough endoplasmic reticulum

(b) Figure 4 shows a diagram of a skeletal muscle fibre.

(Source: © PAL)

Figure 4

Identify the structure labelled Z in Figure 4.

(1)

(2)

(c) Figure 5 shows a sarcomere when a muscle is relaxed.

Draw a sarcomere when the muscle has contracted.

Figure 5

(d) Table 1 shows the average percentages of fast and slow twitch muscle fibres in the legs of two athletes.

athlete	slow twitch muscle fibre (%)	fast twitch muscle fibre (%)
marathon runner	80	20
100 m sprinter	20	80

lable I	
Explain why a higher percentage of fast twitch muscle fibres enables a sprinter to run short distances at fast speeds.	(3)
(Total for Question 2 = 7 ma	rks)

3 Bacterial cells are stained so that they can be viewed and identified using a light microscope.

Gram-negative and Gram-positive bacteria stain differently using a Gram stain.

(a) Identify the cell component in Gram-positive bacteria that causes them to appear purple after Gram staining.

(1)

- A capsule
- **B** cell wall
- C nucleoid
- **D** plasmids
- (b) Gram-positive bacteria were spread onto a nutrient agar plate.

A disc of filter paper was soaked in the antibiotic penicillin.

The disc was then placed in the centre of the nutrient agar plate.

Figure 6 shows the results after the plate had been incubated at 30 °C for 24 hours.

The zone of inhibition is the area where the bacteria have not grown.

(Source: © PAL)

Figure 6

(i)	In Figure 6, the zone of inhibition has a radius of 12 mm.	
	Calculate the area of the zone of inhibition.	
	area of the zone of inhibition = πr^2	
	$\pi = 3.14$	
	r = radius	(2)
		(2)
	area of the zone of inhibition = mm ²	
(ii)	Explain why penicillin inhibits the growth of Gram-positive bacteria.	
		(3)

(Total for Question 3 = 6 marks)

4 Figure 7 shows an action potential in a neurone.

Figure 7

(a) Identify the stage of the action potential that is represented by the \triangle in Figure 7.

(1)

/mV

(b) Figure 8 shows an action potential.

The threshold value is labelled.

Figure 8

Give the threshold value shown in Figure 8.

(1)

(c) Explain how an axon resting membrane potential is maintained. (4)

(Total for Question 4 = 6 marks)

(6)

5 Arteries are lined with endothelial cells.

Damage to the lining of the arteries can lead to atherosclerosis.

Figure 9 shows part of a healthy human artery and part of an artery narrowed by an atherosclerotic plaque.

normal human artery

damaged human artery

Figure 9

Hypertension (high blood pressure) is a risk factor that can result in damage to the artery lining.

Discuss how high blood pressure can result in the lining of arteries being damaged.

(Total for Question 5 = 6 marks)

TOTAL FOR SECTION A = 30 MARKS TOTAL FOR EXAMINATION = 90 MARKS

BLANK PAGE

BLANK PAGE

BLANK PAGE

